Lattice calculation of the hadronic contributions to the muon anomalous magnetic moment

Tom Blum (UConn / RIKEN BNL Research Center)

Lattice Meets Experiment: BSM Brookhaven National Lab December 6, 2013

Collaborators

Past/On-going work on g-2 done in collaboration with

HVP	HLbL
Christopher Aubin (Fordham U)	Saumitra Chowdhury (UConn)
Maarten Golterman (SFSU)	Masahi Hayakawa (Nagoya)
Santiago Peris (SFSU/Barcelona)	Taku Izubuchi (BNL/RBRC)
	Eigo Shintani (RBRC)
RBC/UKQCD	Norikazu Yamada (KEK)

New work starting with RBC/UKQCD collab (Christ, Jin, ...)

Outline

Motivation and Introduction

The hadronic vacuum polarization (HVP) contribution $(O(\alpha^2))$

The hadronic light-by-light (HLbL) contribution $(O(\alpha^3))$

 $\mathsf{Summary}/\mathsf{Outlook}$

The hadronic vacuum polarization (HVP) contribution (O(α^2)) The hadronic light-by-light (HLbL) contribution (O(α^3)) Summary/Outlook

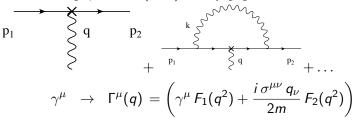
New experiments + new theory = (?) new physics

muon anomaly a_{μ} provides important test of the SM

- ▶ BNL E821: a_{μ}^{exp} accuracy is 0.54 ppm
- Fermilab E989, start is ~ 3 years away, goal is 0.14 ppm
- J-PARC E34
- ho $a_{\mu}(\text{Expt})$ - $a_{\mu}(\text{SM}) = 287(63)(51) \ (\times 10^{-11})$, or $\sim 3.6\sigma$
- If both central values stay the same,
 - ► E989 ($\sim 4 \times$ smaller error) $\rightarrow \sim 5\sigma$
 - ► E989+new HLBL theory (models+lattice, 10%) $\rightarrow \sim 6\sigma$
 - ► E989+new HLBL +new HVP (50% reduction) $\rightarrow \sim 8\sigma$
- ▶ Big discrepancy! (New Physics $\sim 2 \times$ Electroweak)
- Lattice calculations crucial

The magnetic moment of the muon

In interacting quantum (field) theory g gets corrections



which results from Lorentz and gauge invariance when the muon is on-mass-shell.

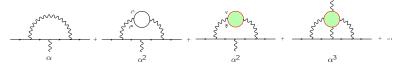
$$F_2(0) = \frac{g-2}{2} \equiv a_{\mu} \qquad (F_1(0) = 1)$$

(the anomalous magnetic moment, or anomaly)

The magnetic moment of the muon

Compute these corrections order-by-order in perturbation theory by expanding $\Gamma^{\mu}(q^2)$ in QED coupling constant

$$\alpha = \frac{e^2}{4\pi} = \frac{1}{137} + \dots$$



Corrections begin at $\mathcal{O}(\alpha)$; Schwinger term = $\frac{\alpha}{2\pi} = 0.0011614...$

hadronic contributions $\sim 6 \times 10^{-5}$ times smaller (leading error).

Outline

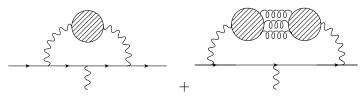
Motivation and Introduction

The hadronic vacuum polarization (HVP) contribution (O(α^2))

The hadronic light-by-light (HLbL) contribution $(O(\alpha^3))$

 $\mathsf{Summary}/\mathsf{Outlook}$

Hadronic vacuum polarization (HVP) (α^2)



The blobs, which represent all possible intermediate hadronic states, are not calculable in perturbation theory, but can be calculated from

- ▶ dispersion relation + experimental cross-section for $e^+e^-(\text{and }\tau) \to \text{hadrons } a_\mu^{\text{had}(2)} = \frac{1}{4\pi^2} \int_{4m_\pi^2}^\infty \mathrm{d}s \, K(s) \sigma_{\text{total}}(s)$
- first principles using <u>lattice QCD</u>, $a_{\mu}^{(2){
 m had}} = \left(\frac{\alpha}{\pi}\right)^2 \int_0^{\infty} dQ^2 f(Q^2) \Pi(Q^2)$ [Lautrup and de Rafael 1969, Blum 2002]

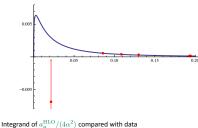
$a_{\mu}(\mathrm{HVP})$ lattice results

	a_{μ}	N_f	errors	action	group
	713(15)	2+1	stat.	Asqtad	Aubin, Blum (2006)
	748(21)	2+1	stat.	Asqtad	Aubin, Blum (2006)
	641(33)(32)	2+1	stat., sys.	DWF	UKQCD (2011)
	674(21)(18)	2+1+1	stat., sys	TM	ETMC (2013)
	572(16)	2	stat.	TM	ETMC (2011)
	618(64)	$2(+1)^1$	stat., sys.	Wilson	Mainz (2011)
	Exp.				
-	692.3 (4.2)			e^+e^-	Davier, <i>et al.</i> (2011)
	694.9 (4.3)			e^+e^-	Hagiwara, et al. (2012)
	` ,			$e^+e^-\ e^+e^-+ au$	` ,

¹strange quark is quenched

$a_{\mu}(HVP)$ integrand: low momentum region

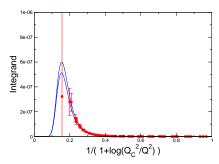
Finite volume → minimum finite momentum Integral dominated by low $Q^2 \sim m_\mu^2$ region. Stat. errors larger too



Integrand of $a_{\mu}^{\rm HLO}/(4\alpha^2)$ compared with data (MILC, a = 0.06 fm , $m_{\pi} = 220 \text{ MeV}$)

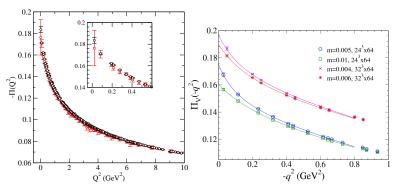
need more data at low Q^2 with smaller errors! In progress...

ABGP [Aubin, et al., arXive:1205:3695]



UKQCD [arXive:1107.1497]

$a_{\mu}(\mathrm{HVP})$ Reducing statistical errors: All Mode Averaging



Use AMA, 1400 LM / 704 sources, 48³ \times 144 (MILC), 20 configs, 2.6-20 \times error reduction for same cost!. RBC/UKQCD preliminary DWF results also show large error reduction (see Shintani, Lattice 2013).

[AMA method: Blum, Izubuchi, Shintani, Phys. Rev. D 88, 094503 (2013)]

$a_{\mu}({ m HVP})$ errors

Controlling errors at the 1% level

- Q² dependence
 - ► All mode averaging (AMA) (statistics) Phys. Rev. D 88, 094503 (2013)
 - ► Twisted BC's or large box Mainz; Aubin etal, Phys. Rev. D 88, 074505 (2013)
 - ► Pade approximants for model independent fits PRD 86 054509 (2012)
 - avoid fit, analytic cont. (Ji and Jung, DESY+KEK, Mainz)
- physical quark masses / large boxes
- disconnected diagrams / isospin breaking
- charm contribution

Will give confidence that dispersive calculation is right

RBC/UKQCD calculation of the HVP

- physical u,d,s quarks and quenched c
- ▶ large volume: 48 * 0.114 = 5.47 fm box (2× in t dir) $(q_{\min} = 0.113 \text{ GeV})$
- ▶ Use AMA+random Z2 noise sources
- twisted b.c. for valence quarks for $q^2 = 0$
- eventually 0.086 fm ensemble as well
- Disconnected quark loop diagrams (Hyung-Jin Kim, others)
- Calculation starting on FNAL bc cluster

Outline

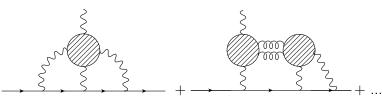
Motivation and Introduction

The hadronic vacuum polarization (HVP) contribution $(\mathsf{O}(lpha^2))$

The hadronic light-by-light (HLbL) contribution (O($lpha^3$))

 $\mathsf{Summary}/\mathsf{Outlook}$

HLbL (α^3)



Blobs: all possible hadronic states

Model estimates put this $\mathcal{O}(\alpha^3)$ contribution at about $(10-12) \times 10^{-10}$ with a 25-40% uncertainty

No dispersion relation a'la vacuum polarization

Lattice regulator: model independent, approximations systematically improvable

HLbL: QCD+QED on the lattice

$$\left\langle\begin{array}{c} \text{quark} \\ \\ \end{array}\right\rangle_{\text{QCD+q-QED}} = \left\langle\begin{array}{c} \text{quark} \\ \\ \end{array}\right\rangle_{\text{q-QED}}$$

$$\left\langle\begin{array}{c} \text{quark} \\ \\ \text{quark} \\ \end{array}\right\rangle_{\text{q-QED}}$$

$$+3\times \left\langle\begin{array}{c} \\ \end{array}\right\rangle_{\text{q-QED}}$$

Average over combined gluon and photon gauge configurations Quarks coupled to gluons and photons, muon coupled to photons Correlation function and subtraction highly correlated

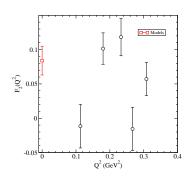
[Hayakawa, et al. hep-lat/0509016; Chowdhury et al. (2008); Chowdhury Ph. D. thesis (2009)]

$a_{\mu}(\mathrm{HLbL})$ in 2+1 flavor lattice QCD+QED

- ► Lattice size, 24³ ((2.7 fm)³)
- ▶ Pion mass, $m_{\pi} = 329 \text{ MeV}$
- Muon mass (190 MeV)
- ▶ $0.11 \lesssim Q^2 \lesssim 0.31 \text{ GeV}^2$
- Use All Mode Averaging (AMA)
 - ▶ 6³ (5³) point sources/configuration = 216 (125)
 - ▶ AMA approximation: "sloppy CG", $r_{\rm stop} = 10^{-4}$

[Blum, Hayakawa, and Izubuchi (arXiv:1301.2607)]

$a_{\mu}(\mathrm{HLbL})$ in 2+1f lattice QCD+QED (PRELIMINARY)



[Blum, Hayakawa, and Izubuchi (Lattice 2013)]

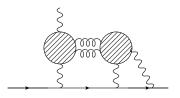
- Signal emerging in the model ballpark
- ▶ model value/error is "Glasgow Consensus" (arXiv:0901.0306 [hep-ph])
- ▶ $m_{\pi} = 329 \text{ MeV}$
- Stat. error only
- Low points: fewer combinations in average. Insufficient statistics?

$a_{\mu}(\mathrm{HLbL})$ in 2+1f lattice QCD+QED (PRELIMINARY)

Check of subtraction (using heavier quark and muon masses)

- ▶ Change charge to e = 0.84, 1.19
- lacktriangle HLbL amplitude $(\sim e^4)$ changes by ~ 0.5 and 2 \checkmark
- lacktriangle while unsubtracted amplitude stays the same \checkmark

$a_{\mu}(\mathrm{HLbL})$ "Disconnected" diagrams



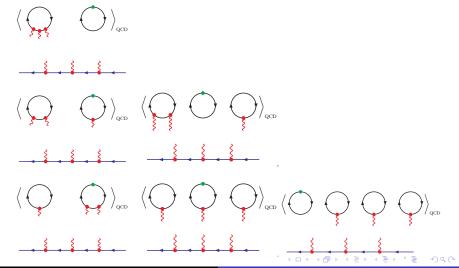
not calculated yet (not suppressed)

Omission due to use of quenched QED, i.e., sea quarks not electrically charged. Two possibilities,

- 1. Re-weight in α (T. Ishikawa, et al., Phys.Rev.Lett. 109 (2012) 072002) or
- 2. dynamical QED(+QCD) in HMC

Use same non-perturbative method as for quenched QED

$a_{\mu}(\mathrm{HLbL})$ Disconnected quark loop diagrams



$a_{\mu}(\mathrm{HLbL})$ Disconnected quark loop diagrams in our non-perturbative method

$a_{\mu}(\mathrm{HLbL})$ Disconnected quark loop diagrams in our non-perturbative method

Diagrams in non-perturbative method have various "multiplicities"

	$\mathcal{M}_C + \mathcal{M}_{C'}$	\mathcal{M}_D			
LBL(4)	3	0			
LBL(1,3)	0	3			
LBL(2,2)	1	2			
LBL(3,1)	2	1			
LBL(1,1,2)	0	3			
LBL(2,1,1)	1	2			
LBL(1,1,1,1)	0	3			

But, physical linear combination, $\mathcal{M}_C + \mathcal{M}_{C'} + \mathcal{M}_D$ has overall factor of 3

$a_{\mu}(\mathrm{HLbL})$ Errors

Need to address

- statistics
- $q^2 \rightarrow 0$ extrapolation
- excited states/"around the world" effects
- Finite volume
- $ightharpoonup m_q$ $\rightarrow m_q$ phys
- $ightharpoonup m_{\mu, \, \mathrm{phys}}$
- ightharpoonup a
 ightharpoonup 0
- QED renormalization
-

Even 20-30% total error, if solid, is very interesting

Outline

Motivation and Introduction

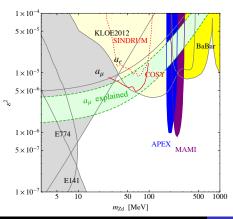
The hadronic vacuum polarization (HVP) contribution $(\mathsf{O}(lpha^2))$

The hadronic light-by-light (HLbL) contribution $(O(\alpha^3))$

Summary/Outlook

Dark photon: U(1)' extension(s) of SM ("dark charge")

Explanation for astrophysical obs. of excess positrons (PAMELA, INTEGRAL,...). Contributes to a_{μ} (Pospelov 2008)



- $\gamma' \gamma$ Mixing couples SM, Dark sectors
- Like LO Schwinger term
- m = 10 1000 MeV
- coupling $\epsilon^2 = 10^{-8} 10^{-2}$
- ▶ Pospelov (2008): explains g − 2 discrepancy
- ▶ Assumes $\gamma' \rightarrow e^+e^-$
- Search at Mainz, RHIC, Jlab, ..

Plot courtesy Bill Marciano

Summary/Outlook

- Important testing ground for new physics
- Hadronic contributions dominate theory error
- Demanding, but straightforward calculations
- Great interest in HVP in lattice community
- First HLbL lattice calculation encouraging
- Expected precision (next 3-5 years)
 - ► E989 (J-PARC 34?): 0.14 PPM (3-4 better than E821)
 - ► SM theory, HVP: 0.3% (factor of 2 exp, lattice?)
 - ► SM theory, HLbL 10-20% (?)
 - Same central values, a_{μ} discrepancy ightarrow 5-8 σ

Acknowledgments

- ► This research is supported in part by the US DOE
- Computational resources provided by the RIKEN BNL Research Center and USQCD Collaboration
- Lattice computations done on
 - QCDOC at BNL
 - Ds cluster at FNAL
 - q-series clusters at JLab